HomeProductsFiberFiberSingle Mode Fiber Single Mode Dispersion Compensating Fiber

Single Mode Dispersion Compensating Fiber


Dispersion Compensating Fiber

  • Dispersion-Compensating SM Fiber for Telecom Wavelengths (1500 - 1625 nm)
  • DCF38 is Specifically Designed to Compensate Corning SMF-28e+ Fiber


  • Dispersion Compensating Fiber for Telecom Wavelengths (1500 - 1625 nm)
    • DCF3 is for General Telecom Dispersion Compensation (Negative Dispersion and Low Positive Dispersion Slope)
    • DCF38 is Designed to Compensate Corning SMF-28e+ Fiber
  • Outer Jacket Available upon Request
  • Shipped from Stock with No Minimum Order

Thorlabs offers dispersion compensating bare fiber for custom solutions across a broad spectral range in the telecom region. DCF3 fiber is a non-zero dispersion-shifted fiber (NZ-DSF) with negative dispersion and low positive dispersion slope that is optimal for medium distances and wide band WDM systems. Optical dispersion across the entire C-band enables effective dispersion compensation and suppresses nonlinear impairments. DCF38 has dispersion designed specifically to match and compensate Corning SMF-28e+ or Vascade L1000 fiber. Please see the Dispersion Tutorial tab for more detailed information about dispersion compensating fibers.

Compatible Connector Supplies
FC/APC Connector 30126K1
FC/PC Connector 30126D1
Stripping Tool T06S13
Cleaving Tool S90R
FC/APC Connectorization Kit CK05
FC/PC Connectorization Kit CK03


Dispersion compensating fibers are fully compatible with typical connectors and termination tools. Loss is slightly higher than typical SM fibers at around 1 dB. Lower losses can be achieved by splicing. Various compatible connectors and tools are summarized in the table to the right.


Splicers and tooling designed for Ø125 µm fiber can be used with this fiber. To achieve an optimized fuse, the program should use a shorter fusion time than with conventional SM fibers. This is due to excess diffusion of the core dopants, which alters the guiding properties of the fiber in the splice region. Alteriatively, DCF3 can be used as a bridge between DCF38 and SMF-28 to reduce splice losses.


Dispersion in Optical Fiber

Chromatic dispersion is a property of optical fiber where different wavelengths of light propogate at different velocities. Chromatic dispersion is a function of wavelength, and is the sum of two components: material and waveguide dispersion. Material dispersion arises from the change in a material's refractive index with wavelength, which changes the propogation velocity of light as a function of wavelength.

Waveguide dispersion is a separate effect, arising from the geometry of the fiber optic waveguide. Waveguide properties are a function of wavelength; consequently, changing the wavelength affects how light is guided in a single-mode fiber. For example, decreasing the wavelength will increase the relative waveguide dimensions, causing a change in the distribution of light in the cladding and core. In general:

Dispersionchromatic(λ) = Dispersionmaterial(λ) + Dispersionwaveguide(λ)

Since material and waveguide dispersion are wavelength dependent, the dispersion is a function of wavelength. The dispersion slope can be positive or negative.

Dispersion-Shifted Fiber

In standard step-index single-mode fiber, the sum of the material and waveguide dispersion is zero near 1310 nm, which is called the zero-disperion wavelength. By varying the fiber's waveguide structure, the waveguide dispersion can be shifted up or down, thus changing the zero-dispersion point. Fiber in which the zero-dispersion wavelength has been changed is called zero dispersion-shifted fiber.

An initial strategy was to alter the waveguide structure to shift the zero-dispersion point to the signal wavelength of 1550 nm, creating zero-dispersion shifted fiber (see the diagram to the right). Unfortunately, fixing the dispersion problem is not so simple. When multiple optical channels pass through the same fiber at wavelengths where dispersion is very close to zero, they suffer from a type of crosstalk called four-wave mixing. The degradation is so severe that zero dispersion-shifted fiber cannot be used for dense-WDM systems. To avoid four-wave mixing, the zero-dispersion wavelength is moved outside the transmission band. So-called nonzero dispersion-shifted fibers have a dispersion that is low, but nonzero in the 1550 nm band (typically 0.1 to 6 ps/nm*km). Although dispersion is minimized, it is still present.

Dispersion-Compensating Fiber

Since dispersion is inevitable in optical fibers, dispersion-compensating fibers, such as those sold on this page, can be incorporated into optical systems. The overall dispersion of these fibers is opposite in sign and much larger in magnitude than that of standard fiber, so they can be used to cancel out or compensate the dispersion of a standard single-mode fiber, such as a nonzero dispersion-shifted fiber. A negative dispersion slope enables effective cancellation of dispersion over a larger wavelength range, since the dispersion slope of standard fiber is usually positive. Generally, a short length of dispersion-compensating fiber is spliced into a longer length of standard fiber to compensate for dispersion.


Our Mission is to accelerate the advancement of optical technology for precision measurements and their applications from the table tops of research laboratories to standard use in communication and high technology industries. Our aim is to serve our customers. Our hope is to create a place for highly skilled people in an open environment

contact us

Tel               +966 35823441
Fax               +966 35823441
Egypt Mobile  +2 0120 7577664
KSA Mobile     +966 545 991188
Email             This email address is being protected from spambots. You need JavaScript enabled to view it.