TO Can Laser Diodes


Laser Diodes, Ø5.6 mm, Ø9 mm, and Ø9.5 mm TO Cans

  • Ø5.6 mm, Ø9 mm, and Ø9.5 mm Laser Diodes
  • Center Wavelengths Ranging from 375 - 1650 nm


  • Output Powers Up to 1 W
  • Center Wavelengths Available from 375 nm to 1650 nm
  • Easily Choose a Compatible Mount Using Our LD Pin Codes
  • Compatible with Thorlabs' Laser Diode and TEC Controllers

TO-packaged laser diodes are available in either standard Ø5.6 mm or Ø9 mm TO Cans. We have categorized the pin configurations into standard A, B, C, D, E, F, G and H pin codes (see the diagram below). This pin code allows the user to easily determine compatible mounts.

Notes on Center Wavelength
While the center wavelength is listed for each diode, this is only a typical number. The center wavelength of a particular diode varies from production run to production run. Thus, the diode you receive may not operate at the typical center wavelength. Diodes can be temperature tuned, which will alter the lasing wavelength. A number of diodes are listed as Wavelength Tested, which means that each diode has been tested and the dominant wavelength has been recorded. Customers may contact Technical Support to select one of these diodes based on the tested wavelength. For the LD785-SE400, after clicking "Choose Item" below, a list will appear that contains the dominant wavelength, output power, and operating current of each in-stock unit. Clicking on the red Docs Icon next to the serial number provides access to a PDF with serial-number-specific L-I-V and spectral characteristics.

Spatial Mode and Linewidth
Most lasers offered here are single-transverse mode ("single mode") and a few are designed for higher-power multi-transverse mode ("multimode") operation.  We offer laser diodes with different output characteristics (power, wavelength, beam size, shape, etc.). Some single mode laser diodes can be operated with limited single-longitudinal mode characteristics. For better side-mode-suppression ratio (SMSR) performance, other device such DFB lasers or external cavity lasers should be considered.


Laser Diode and Laser Diode Pigtail Warranty

When operated within their specifications, laser diodes have extremely long lifetimes. Most failures occur from mishandling or operating the lasers beyond their maximum ratings. Laser Diodes are among the most static-sensitive devices currently made. Proper ESD Protection should be worn whenever handling a laser diode. Due to their extreme electrostatic sensitivity, laser diodes cannot be returned after their sealed package has been open. Laser diodes in their original sealed package can be returned for a full refund or credit.

Handling and Storage Precautions

Due to their extreme susceptibility to damage from electrostatic discharge (ESD), care should be taken whenever handling and operating laser diodes:

  • Wrist Straps: Use grounded anti-static wrist straps whenever handling diodes.
  • Anti-Static Mats: Always work on grounded anti-static mats.
  • Laser Diode Storage: When not in use, short the leads of the laser together to protect against ESD damage.

Operating and Saftey Precautions

Use an Appropriate Driver:
Laser diodes require precise control of operating current and voltage to avoid overdriving the laser diode. In addition, the laser driver should provide protection against power supply transients. Select a laser driver appropriate for your application. Do not use a voltage supply with a current limiting resistor since it does not provide sufficient regulation to protect the laser.

Power Meters:
When setting up and calibrating a laser diode with its driver, use a NIST-traceable power meter to precisely measure the laser output. It is usually safest to measure the laser output directly before placing the laser in an optical system. If this is not possible, be sure to take all optical losses (transmissive, aperture stopping, etc.) into consideration when determining the total output of the laser.

Flat surfaces in the optical system in front of a laser diode can cause some of the laser energy to reflect back onto the laser’s monitor photodiode giving an erroneously high photodiode current. If optical components are moved within the system and energy is no longer reflected onto the monitor photodiode, a constant power feedback loop will sense the drop in photodiode current and try to compensate by increasing the laser drive current and possibly overdriving the laser. Back reflections can also cause other malfunctions or damage to laser diodes. To avoid this, be sure that all surfaces are angled 5-10°, and when necessary, use optical isolators to attenuate direct feedback into the laser.

Heat Sinks:
Laser diode lifetime is inversely proportional to operating temperature. Always mount the laser in a suitable heat sink to remove excess heat from the laser package.

Voltage and Current Overdrive:
Be careful not to exceed the maximum voltage and drive current listed on the specification sheet with each laser diode, even momentarily. Also, reverse voltages as little as 3 V can damage a laser diode.

ESD Sensitive Device:
Currently operating lasers are susceptible to ESD damage. This is particularly aggravated by using long interface cables between the laser diode and its driver due to the inductance that the cable presents. Avoid exposing the laser or its mounting apparatus to ESDs at all times.

ON/OFF and Power Supply Coupled Transients:
Due to their fast response times, laser diodes can be easily damaged by transients less than 1 µs. High current devices such as soldering irons, vacuum pumps, and fluorescent lamps can cause large momentary transients. Thus, always use surge-protected outlets.

Life Support and Military Use Application Policy

Thorlabs' products are not authorized for use as critical components in life support devices or systems or in any military applications without the express written approval of the president of Thorlabs:

  1. Life support devices or systems are devices or systems intended for either surgical implantation into the body or to sustain life and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
  2. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.
  3. Thorlabs' laser diodes are not intended nor warranted for usage in Military Applications.


Our Mission is to accelerate the advancement of optical technology for precision measurements and their applications from the table tops of research laboratories to standard use in communication and high technology industries. Our aim is to serve our customers. Our hope is to create a place for highly skilled people in an open environment

contact us

Tel               +966 35823441
Fax               +966 35823441
Egypt Mobile  +2 0120 7577664
KSA Mobile     +966 545 991188
Email             This email address is being protected from spambots. You need JavaScript enabled to view it.